HeRoBo: A Robotics Game Concept Using Recycled Materials to Develop Early Childhood Awareness
Abstract
Abstrak
Perkembangan teknologi dan kesadaran lingkungan sejak usia dini menjadi isu penting dalam pendidikan anak usia dini (PAUD). Namun, ketersediaan media pembelajaran robotika yang aman, ekonomis, dan ramah lingkungan di PAUD masih terbatas. Penelitian ini bertujuan mengembangkan prototipe permainan robotika berbahan daur ulang, yang disebut HeRoBo (Heritage Recycle Robot), untuk membangun kepekaan anak terhadap teknologi dan lingkungan. Metode penelitian menggunakan pendekatan Research and Development (R&D) melalui tahapan analisis kebutuhan, perancangan prototipe, uji coba awal, revisi, dan evaluasi. Hasil penelitian menunjukkan bahwa prototipe HeRoBo dapat dirakit oleh anak dengan bantuan minimal serta mampu mendorong kreativitas, kemampuan berpikir kritis, pemecahan masalah, dan kesadaran ekologis. Anak menunjukkan kemampuan mengenali dan memilih bahan daur ulang, membedakan material organik dan nonorganik, serta mengeksplorasi berbagai konfigurasi robot secara kreatif. Interaksi langsung dengan prototipe memberikan pengalaman belajar yang konkret, interaktif, dan aplikatif sesuai prinsip STEM Education for Young Learners untuk pembelajar usia dini. Implikasi penelitian ini menunjukkan bahwa HeRoBo berpotensi menjadi alternatif media pembelajaran inovatif berbasis STEM yang berkelanjutan, berbiaya rendah, dan mudah diimplementasikan di PAUD, sekaligus mendukung penguatan pendidikan lingkungan dan literasi teknologi sejak usia dini. Kesimpulannya, HeRoBo efektif mengintegrasikan teknologi, kreativitas, dan pendidikan lingkungan secara holistik dalam pembelajaran anak usia dini.
Kata kunci: Anak Usia Dini, Bahan Daur Ulang, HeRoBo, Robotika
Abstract
The development of technology and environmental awareness from an early age are important issues in early childhood education (PAUD). However, the availability of safe, economical, and environmentally friendly robotics learning media in PAUD is still limited. This study aims to develop a prototype of a robotics game made from recycled materials, called HeRoBo (Heritage Recycle Robot), to build children's sensitivity to technology and the environment. The research method uses a Research and Development (R&D) approach through the stages of needs analysis, prototype design, initial trials, revisions, and evaluation. The results show that the HeRoBo prototype can be assembled by children with minimal assistance and is able to encourage creativity, critical thinking skills, problem solving, and ecological awareness. Children demonstrated the ability to recognize and select recycled materials, differentiate organic and non-organic materials, and creatively explore various robot configurations. Direct interaction with the prototype provides a concrete, interactive, and applicable learning experience according to STEM Education for Young Learners principles for early learners. The implications of this research indicate that HeRoBo has the potential to be an alternative, innovative, STEM-based learning medium that is sustainable, low-cost, and easy to implement in early childhood education, while also supporting the strengthening of environmental education and technological literacy from an early age. In conclusion, HeRoBo effectively integrates technology, creativity, and environmental education holistically into early childhood learning.
Keywords: Early Childhood, HeRoBo, Recycled Materials, Robotics
References
Akhmad, A., & Gudnanto, G. (2025). Pembelajaran Robotika Pada Anak Usia Dini: Sebuah Tinjauan Literatur. Jurnal Penelitian Dan Pengembangan Pendidikan Anak Usia Dini.
Bellon Maurel, V., & Huyghe, C. (2017). Putting agricultural equipment and digital technologies at the cutting edge of agroecology. OCL, 24(3), D307. https://doi.org/10.1051/ocl/2017028
Bogue, R. (2019). Robots in recycling and disassembly. Industrial Robot: The International Journal of Robotics Research and Application, 46(4), 461–466. https://doi.org/10.1108/IR-03-2019-0053
Bredekamp, S. (2019). Effective practices in early childhood education: Building a foundation. Pearson Education.
Budiyanto, C. W., Shahbodin, F., Umam, M. U. K., Isnaini, R., Rahmawati, A., & Widiastuti, I. (2021). Developing Computational Thinking Ability in Early Childhood Education:
The Influence of Programming-toy on Parent-Children Engagement. International Journal of Pedagogy and Teacher Education, 5(1), 19–25.
Castellano, G., De Carolis, B., D’Errico, F., Macchiarulo, N., & Rossano, V. (2021). PeppeRecycle: Improving Children’s Attitude Toward Recycling by Playing with a Social Robot. International Journal of Social Robotics, 13(1), 97–111. https://doi.org/10.1007/s12369-021-00754-0
Cheng, Y., Chan, K. H., Wang, X., Ding, T., Li, T., Zhang, C., Lu, W., Zhou, Y., & Ho, G. W. (2021). A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. Advanced Functional Materials, 31(32). https://doi.org/10.1002/adfm.202101825
Costa Cornellà, A., Tabrizian, S. K., Ferrentino, P., Roels, E., Terryn, S., Vanderborght, B., Van Assche, G., & Brancart, J. (2023). Self-Healing, Recyclable, and Degradable Castor Oil-Based Elastomers for Sustainable Soft Robotics. ACS Sustainable Chemistry & Engineering, 11(8), 3437–3450. https://doi.org/10.1021/acssuschemeng.2c06874
Farrugia, M. E., & Goodfellow, J. A. (2020). A Practical Approach to Managing Patients With Myasthenia Gravis—Opinions and a Review of the Literature. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.00604
Gerbers, R., Wegener, K., Dietrich, F., & Dröder, K. (2018). Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries (pp. 99–126). https://doi.org/10.1007/978-3-319-70572-9_6
Gundupalli, S. P., Hait, S., & Thakur, A. (2017). A review on automated sorting of source-separated municipal solid waste for recycling. Waste Management, 60, 56–74. https://doi.org/10.1016/j.wasman.2016.09.015
Hjorth, S., & Chrysostomou, D. (2022). Human–robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robotics and Computer-Integrated Manufacturing, 73, 102208. https://doi.org/10.1016/j.rcim.2021.102208
Huang, J., Pham, D. T., Li, R., Qu, M., Wang, Y., Kerin, M., Su, S., Ji, C., Mahomed, O., Khalil, R., Stockton, D., Xu, W., Liu, Q., & Zhou, Z. (2021). An experimental human-robot collaborative disassembly cell. Computers & Industrial Engineering, 155, 107189. https://doi.org/10.1016/j.cie.2021.107189
Javed, A. R., Shahzad, F., Rehman, S. ur, Zikria, Y. Bin, Razzak, I., Jalil, Z., & Xu, G. (2022). Future smart cities: requirements, emerging technologies, applications, challenges, and future aspects. Cities, 129, 103794. https://doi.org/10.1016/j.cities.2022.103794
Kaarlela, T., Villagrossi, E., Rastegarpanah, A., San-Miguel-Tello, A., & Pitkäaho, T. (2024). Robotised disassembly of electric vehicle batteries: A systematic literature review. Journal of Manufacturing Systems, 74, 901–921. https://doi.org/10.1016/j.jmsy.2024.05.013
Kanaki, K., & Kalogiannakis, M. (2023). Fostering computational thinking and environmental awareness via robotics in early childhood education: A scoping review. Research on Preschool and Primary Education, 39–50. https://doi.org/10.55976/rppe.12023217739-50
Kashiri, N., Abate, A., Abram, S. J., Albu-Schaffer, A., Clary, P. J., Daley, M., Faraji, S., Furnemont, R., Garabini, M., Geyer, H., Grabowski, A. M., Hurst, J., Malzahn, J., Mathijssen, G., Remy, D., Roozing, W., Shahbazi, M., Simha, S. N., Song, J.-B., … Tsagarakis, N. (2018). An Overview on Principles for Energy Efficient Robot Locomotion. Frontiers in Robotics and AI, 5. https://doi.org/10.3389/frobt.2018.00129
Kay, I., Farhad, S., Mahajan, A., Esmaeeli, R., & Hashemi, S. R. (2022). Robotic Disassembly of Electric Vehicles’ Battery Modules for Recycling. Energies, 15(13), 4856. https://doi.org/10.3390/en15134856
Lakhouit, A. (2025). Revolutionizing urban solid waste management with AI and IoT: A review of smart solutions for waste collection, sorting, and recycling. Results in Engineering, 25, 104018. https://doi.org/10.1016/j.rineng.2025.104018
Larasati, S., Romadhona, S., & Affandi, M. A. (2025). Edukasi Dasar Robotika bagi Tenaga Pendidik Kinder Club Banyumas Menggunakan Robot Line Follower untuk Meningkatkan Kreativitas dan Problem Solving. Jurnal Abdi Masyarakat Indonesia, 5(4), 1631–1640.
Li, J., Barwood, M., & Rahimifard, S. (2018). Robotic disassembly for increased recovery of strategically important materials from electrical vehicles. Robotics and Computer-Integrated Manufacturing, 50, 203–212. https://doi.org/10.1016/j.rcim.2017.09.013
Li, J., Barwood, M., & Rahimifard, S. (2019). A multi-criteria assessment of robotic disassembly to support recycling and recovery. Resources, Conservation and Recycling, 140, 158–165. https://doi.org/10.1016/j.resconrec.2018.09.019
Lubongo, C., Bin Daej, M. A. A., & Alexandridis, P. (2024). Recent Developments in Technology for Sorting Plastic for Recycling: The Emergence of Artificial Intelligence and the Rise of the Robots. Recycling, 9(4), 59. https://doi.org/10.3390/recycling9040059
Maiurova, A., Kurniawan, T. A., Kustikova, M., Bykovskaia, E., Othman, M. H. D., Singh, D., & Goh, H. H. (2022). Promoting digital transformation in waste collection service and waste recycling in Moscow (Russia): Applying a circular economy paradigm to mitigate climate change impacts on the environment. Journal of Cleaner Production, 354, 131604. https://doi.org/10.1016/j.jclepro.2022.131604
Mayasari, R., Astuti, S., Negara, R. M., Tulloh, R., & Nurmantris, D. A. (2025). Training Introduction to Simple Robots for Kindergarten Child as a Tool in Improving Children’s Psychomotoric Abilities. Journal of Innovation and Community Engagement, 6(3), 205–214.
Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook. Sage Publications.
Papadopoulou, A., Kumar, N. S., Vanhoestenberghe, A., & Francis, N. K. (2022). Environmental sustainability in robotic and laparoscopic surgery: systematic review. British Journal of Surgery, 109(10), 921–932. https://doi.org/10.1093/bjs/znac191
Piaget, J. (1972). The psychology of the child. Basic Books.
Poschmann, H., Brüggemann, H., & Goldmann, D. (2021). Fostering End-of-Life Utilization by Information-driven Robotic Disassembly. Procedia CIRP, 98, 282–287. https://doi.org/10.1016/j.procir.2021.01.104
Qu, J., Yuan, Q., Li, Z., Wang, Z., Xu, F., Fan, Q., Zhang, M., Qian, X., Wang, X., Wang, X., & Xu, M. (2023). All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping. Nano Energy, 111, 108387. https://doi.org/10.1016/j.nanoen.2023.108387
Rossiter, J., Winfield, J., & Ieropoulos, I. (2016). Here today, gone tomorrow: biodegradable soft robots (Y. Bar-Cohen & F. Vidal (eds.); p. 97981S). https://doi.org/10.1117/12.2220611
Sarc, R., Curtis, A., Kandlbauer, L., Khodier, K., Lorber, K. E., & Pomberger, R. (2019). Digitalisation and intelligent robotics in value chain of circular economy oriented waste management – A review. Waste Management, 95, 476–492. https://doi.org/10.1016/j.wasman.2019.06.035
Sari, W. E., Triyono, A., Irwansyah, I., Utomo, K. B., & Hakim, A. R. (2024). Robot Line Follower sebagai Alat Permainan Edukatif bagi Anak Usia Dini. ETAM: Jurnal Pengabdian Kepada Masyarakat, 4(3), 126–133.
Satav, A. G., Kubade, S., Amrutkar, C., Arya, G., & Pawar, A. (2023). A state-of-the-art review on robotics in waste sorting: scope and challenges. International Journal on Interactive Design and Manufacturing (IJIDeM), 17(6), 2789–2806.
https://doi.org/10.1007/s12008-023-01320-w
Sathiya, V., Chinnadurai, M., Ramabalan, S., & Appolloni, A. (2021). Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company. Environment, Development and Sustainability, 23(6), 9110–9138. https://doi.org/10.1007/s10668-020-01015-2
Shreyas Madhav, A., Rajaraman, R., Harini, S., & Kiliroor, C. C. (2022). Application of artificial intelligence to enhance collection of E-waste: A potential solution for household WEEE collection and segregation in India. Waste Management & Research: The Journal for a Sustainable Circular Economy, 40(7), 1047–1053. https://doi.org/10.1177/0734242X211052846
Suherdi, D., Rezky, S. F., & Sari, K. (2023). Implementasi Tools Robotik Wedo 1.0 Education Berbasis STEAM Melalui Kegiatan Education Fieldtrip dalam Membentuk Karakter Anak Usia Dini. Jurnal Pengabdian Kepada Masyarakat Nusantara, 4(3), 3247–3254.
Sulistyawati, S., Sujaini, H., Salam, U., Aunurrahman, A., & Wicaksono, L. (2024). Robmanjar: Robot Teman Belajar Stimulator Literasi Anak Usia Dini. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 8(4), 724–739.
Suyadi. (2020). Psikologi belajar pendidikan anak usia dini (PAUD). Pustaka Pelajar.
Talla, A., & McIlwaine, S. (2024). Industry 4.0 and the circular economy: using design-stage digital technology to reduce construction waste. Smart and Sustainable Built Environment, 13(1), 179–198. https://doi.org/10.1108/SASBE-03-2022-0050
Tan, M. W. M., Bark, H., Thangavel, G., Gong, X., & Lee, P. S. (2022). Photothermal modulated dielectric elastomer actuator for resilient soft robots. Nature Communications, 13(1), 6769. https://doi.org/10.1038/s41467-022-34301-w
UNESCO. (2020). Education for sustainable development: A roadmap. United Nations Educational, Scientific and Cultural Organization.
Wang, Z., Li, H., & Zhang, X. (2019). Construction waste recycling robot for nails and screws: Computer vision technology and neural network approach. Automation in Construction, 97, 220–228. https://doi.org/10.1016/j.autcon.2018.11.009
Wu, T., Zhang, Z., Yin, T., & Zhang, Y. (2022). Multi-objective optimisation for cell-level disassembly of waste power battery modules in human-machine hybrid mode. Waste Management, 144, 513–526. https://doi.org/10.1016/j.wasman.2022.04.015
Yang, W., Gong, W., Gu, W., Liu, Z., Hou, C., Li, Y., Zhang, Q., & Wang, H. (2021). Self‐Powered Interactive Fiber Electronics with Visual–Digital Synergies. Advanced Materials, 33(45). https://doi.org/10.1002/adma.202104681
Zeng, Y., Zhang, Z., Yin, T., & Zheng, H. (2022). Robotic disassembly line balancing and sequencing problem considering energy-saving and high-profit for waste household appliances. Journal of Cleaner Production, 381, 135209. https://doi.org/10.1016/j.jclepro.2022.135209

